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Abstract

Co-Kriging or Joint Estimation utilizes data from
correlated variables to improve the estimation of all variables
or to compensate for missing data on some variables. The
.general formulation of Co-Kriging in matrix form was given by
the author. The matrix form emphasizes the analogy with
Kriging of one variable utilizing only spatial dependence.
General conditions are obtained for covariance matrix functions
and variogram matrix functions. The extension to block co-
kriging is delineated including the Co-Kriging variance. A
simple algorithm is given for obtaining the "under-sampled”
case from the general matrix formulation. Finally a method for
reducing the size of the system of equations is given and a
iterative method provided which allows solution of even
singular systems in which entries are matrices. .

INTRODUCTION

In (2), (3) the author has given in matrix form the
general formulation of co-kriging and shown that it is a direct
extension of kriging in that form. In this paper we extend
those results in several ways. Section one is concerned with
the general problem of the variance of vector linear

combinations and conditions necessary for a matrix function to
be a covariance or a variogram.
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Although the extension to block estimation does not
present any significant difficulties, it was not included in
(2), (3), and for the sake of completeness is covered in
Section two.

The "under sampled” case is the one that has received the
most attention in mining applications but only for a few
variables and a few sample locations. Section three describes
a simple algorithm for obtaining the system of equations in
matrix form for any “under-sampled” problem from the general
form of Co-Kriging.

Finally Section four introduces methods for solving the
large systems of equations that are generated in the use of Co-
Kriging.

NOTATION

The notation used in (3) will be followed here.
Recall that Tr denotes the trace, i.e. the sum of the
diagonal entries and AT denotes the transpose of A .

VARIANCE OF VECTOR LINEAR COMBINATIONS

One of the singular characteristics of Ordinary Kriging,
i.e., the use of variograms and IRF-0O's is that certain linear
combinations can have finite variance even though the random
function does not have finite variance. One of the properties
of a variogram is the following

) Y(xi—xj)xixj >0 (1)

for all weights Al’ ey An such that Al + ... + An = 0.

That is, =y 1is conditionally positive definite. 1Ia the case
of a second order stationary random function the covariance
must be positive definite. For Co-Kriging it is then
appropriate to ask what kind of matrix functions can be
covariance matrices or variogram matrices.

Let K(h) be an m x m matrix with entries kij(h) . In

the case of second order stationary random functions K(h)
should satisfy

n n
- T_
Tr E r "2 VA )T,
r [121 j2=1 £ 2(xp) (xJ) J1
n n T
=Tl ] [ o1 R(xg=x) T3] 0 (2)

i=1 j=1
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where we assume without loss of generality that

E(z(x)] = [0, ..., O]
If the Zi's are IRF-0's then K(h) should satisfy

n n

TeE [] ) riTZ(xi)TZ(x.)r.]
j=1 i=1 1]
n n T
=-Tc[] )T, K(x,~x ). 1>0 (3
o1 17373 _
i=1 j=1
for all T., ..., T with
1 n
n 0....0
r. = . 4
Iry=li )
J 0....0

Both cases may be considered at the same time. Let Fit

be an m x m matrix whose only non-zero entry is Xit. Then
n .
L r (5)

j=1 ¢=1 St

~15

r. =
J

Substituting in (2) or (3) and recalling that (2) must be
satisfied for all I''s or (3) must be satisfied for all Fj's

satisfying (4), it is necessary and sufficient that
n n

oDl ko=l 4
121 j21 Ss ss i 7j Uss
noTnoo 5
ial jél Asskst(xi_xj) Act *
) Aok (x.-x,) a3
L %et et te
>0 . (6)
< 0 "

for all s, t . (6) corresponds to (2) and (7) to (3). This
can be described somewhat simpler.

2 n
A A, veey A
ss ss ss
are diagonal entries in Fl, ey Pn respectively.

Al

n . .
. .y Att are also diagonal entries. Let
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_ 1 n
Ag [ASS, N ASS] (8)
1 n
= 9
B, [Att, cens Att] (9

kuv(xl—xl)...kuv(xl-xn)
K =1 ° : (10)
uv . .

kuv(xl-xn)...kuv(xn—xn)

then (l16) can be written

T T
11
ASKSSAS * ASKSCBE * BEKEEBET >0 ( )
and (17) as
T T T
+
AK A+ AK B B.K. B, <0 (12)
n i n i
T = ¢ =
LoAge 0 LA =0 (13)
i=1 i=1
It is clearly necessary that
AK A T >0
S ss s
BK B >0 (14)
Lttt t

which are consequences of (21). (24) is the usual positive
definite condition for covariance functions.

BLOCK CO-KRIGING

In (2), (3), (4) the author indicated that the formulation
of Co-Kriging given would extend to estimation of block values,
the results were not given. For the sake of completeness they
are icluded herein. Let V be a volume, area or length and
let

_ 1. 1
zy = g [ 2,Godx, ..., vrf (x)dx] (15)
\ v

— n

If Zv = Z Z(xk) Fk , the problem as before is to determine
k=1
*

the Fk's so that Zv is unbiased and the estimation error

has minimum variance.
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Stationary/Covariance case

If Zl’ Zgy wee, are second order stationary and

Zg
ll(h)...c (h)
...c (h)

C(h)

then
- T.= —-—i - _ _F
E[Z(x )17 (Z)) = = 5 £ c(xi x)dx = C(x,V) (16)
and
E[Z,) (Z(x,)] = = [ Clx-x,)dx = C(v,x.) (17)
v j Vs 3 ]
- T_ - -
E[Z,) (2] = —%—f [ C(x-y)dxdy = C(V,V) (18)
V- vy
The Kriging equations become
n _ _ n
Y C(x.x.)r.+u=c(x vy, J r.=1 (19)
j=1 i™j j i=1 J
with Kriging variance
2 - _ - _ -
oo = Tr CV,V) = Tr § C(xj,V) I Tru (20)

and as with punctual Co-Kriging the component corresponding to
each Zi may be selected out.

The Intrinsic Case

If the Z;'s are 1IRF-0's then we may write

_ 5 1 _% -
7., = 2% = - [Z x( - Z(x,)])dx (21)
v VoL fv k
and E [Zv - Z%]T[ZV - 261 becomes
- T -
=, Ty [ EZM) - zlx)) [2(y) - Z(x.)]dxdy T
)
v

[}

It Feex) 7)) - Y (xey)
i Q? v v j i
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- Y(xixj)]dxdy Fj (22)
From (22) it is easily seen that the Kriging equations are
m
(x,=x )T, +u =v(x,,V r. =1 (23)
jél Y Oxyxy 1J TR C TN ) I
where y(x,V) = V'£ Y (x-x, )dx (24)

If the samples have nonpunctual support then ;(xi,x,) is
replaced by J

1 -—
TV, f f v (x-y)dxdy (25)
i'j ViVj
Vi,Vj being the supports at XjsXj -

The Co-Kriging Variance is
cz = Tr i Y(x.,V) T.- Tr u - Tr 1 [ Y (x-y)dxdy (26)
T LT T At

Since the off-diagonal entries in

— [ [ ¥0Gey)dxdy (27)
v VvV Vv
are not required otherwise the last term in OEK is simply
¢ o1
Z — f f Y ii(x-y)dxdy (28)
i=l V. VvV

THE "UNDER-SAMPLED" CASE

The following example is found in (1) Journel.

A B Data Zl(o))
1 e Z5(0), Zy(A), Z9(B), Zy(C)
c D Z,(D)

V is the square with vertices A,B,C,D. 1t is desired to

estimate ZV where
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1
Zy =5 / Zl(x)dx
\Y
using all the data. In (1), the problem was simplified by
using the symmetry i.e.
= l 7 +
ZZ(SR) A (ZZ(A) +_2(B) + Z2(C) ZZ(D)] . The system of

equations given in (l) is a sub-system of the following

Y(SO,SO) Y*(SO,SR) I [-I‘1 [Y(SO,V)
. —-% -
Y*(SO,SR Y*(SR.SR) I, ' Fz = Y*(SRV)i
I I* 0J v I ] @9
where
v * S = [
Y (SO’ R) 0 YIZ(SO'SR) 309
O 722050252
Y 3(Sg.8) = o0
(30
_ EERPYALEENY)
Ya(8g:Sg) = o 0 }
(32)
SERETICITEN
*
I,=]0o o, 1 = |o o (33)
0 1 0o 1

This system also provides for the estimation of Zoy along
with Z;y . Moreover A%l , Afz will be arbitrarv and hence
may be tiken to be zero, that is ZI<SR) is not used in the
estimation of Z;y or Zoy + In a geometric/graphical way

then it is easy to see how the general Co-Kriging system is
changed to the under-sampled version.

" - r-
YOy G ) 1 T Y (Voxp)
Y-(;(l,-xn)' ERICI ] - r|= {(v,xn) (34)

I ... .. 1I 0 1
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Each column/row in (35) corresponds to a sample location. Each
column/row within a y corresponds to a variable. For each
variable that is not sampled at all locations, locate the
column/row corresponding to the location, then in each f (and
I) change all of the column/row entries corresponding to the
variable. 1In the case of the rows the deletion is applied on
the right side of (35) as well. To see that constraining the
variogram matrices is equivalent to constraining certain

weights to be zero is easily seen.

For simplicity suppose 2.0 is not sampled at x. .

i o
Then T, has additional constraints imposed namely
0
j J
Aiol’ ceey Xiom are all zeros.
0 R 0
Let T. be the modified .. . Similarly let
- jo - jo ’
K. =X be the same as (x..-x ) except that in the
Yl j0 p) 750 5p

io row all entries are zeros and y (xp—x_ ) 1is the same as

= jo
y(xp—xjo) except that all entries in the 1ij4 column are all

- - T
zeros, that is, *(x —x.,.) = (x.,-x ) . Let I be an
TR 507 T Y 50T *

identity matrix except that the iy row is all zeros and
asT -1, .

If Z 1is a vector IRF-0 then the estimation variance in
the under-sampled case is

T.. -~ -
T Y I, y(x.-x) + 7T, X.A—X)
r[jtgo Y 5 ) 30 v ( 50

+ y(x=x, ). ]

+ Tr| Z vy (x-x 507 50

DI
j#30 J ]
7 T2,

+ Tr| z LT y(x x. )T,
i#£30 j#30 nJod

T -

+ )Ty (x,=x, ) T,
i#30 i i 7j0 jo
~ e
+ ) Poy(x.,x.) T,
330 0 jo i j

T—
*T50 Y(%50750) T50] : (35)

The universality conditions can be written




CO-KRIGING - NEW DEVELOPMENTS » 303

-~

¥ Ir +1Ir =1 (36)
i#30 ] J
Consider the following identities

(i) ITo = Ll (37)

. sT- T

(ii) Fjo Y(xjo-X) = I‘jo Y*(on‘x)

(iii) y(x—xjo) I‘jO =y *(x-xjo) I‘jo

. A T~ s T- _

(1V) FJO Y(on_xj) FJ —I‘jo Y*(xjo xj) rj

) Py (Xiqxon) T =T .0 =T, Wk(x.n=x.,) T
30 Y¥%507%3507 T30 T T30 T T30 YAYX507¢507 T 50

(vi) T T—(x -X. ) E =T T—*(x -x,~) T
37507 T30 T N YRTR507 7 50

Then the estimation variance can be written in terms of the
modified y's instead of in terms of the modified Fj's . All

arbitrary entries in the T 's will be set equal to zero.
J

NUMERICAL METHODS

Because of the size, of the system of equations to be
solved in Co-Kriging, makes it formidable for more than a few
variables and a few sample locations. We describe first a
method for reducing the system and then an iterative method
that requires less core memory to solve the system.

Utilizing the matrix form given by (35) let

;(xl—xl). . .?(xl—xn)

K = . (38)

;(xn-xl). . .;(xn—xn)

E = [1...1]T (39)
- T

r = [Fl---Tn] (40)
Ko =’[~;(V,xl)---?(v,xn)]T (41)

Then (35) may be written as



304 D. E. MYERS

K E|l IT K,
= (42)
EF ol |o I
r u

-K. ENf =1 (43)

=4

i.e. K
It KU = Kp, KV = E then (44) becomes

K(T + Vi) =KU or T =U - Vy (44)
If moreover

(ETV)W = EU - I then T =U - W (45)

This not only reduces the size of the system but also avoids
the possibility that (43) is ill-conditioned.

Kacmancz and Tanabe (6) have given an iterative method for
solving systems of equations even when the system is singular:
the author (5) has extended this to systems such as (35) or
(43). For any two n x 1 matrices X,Y whose entries are m X m
matrices let

T

<X,Y> = Y'X and (X,Y) = Tr <X,Y> (46)
(X,Y) 1is an inner-product and | X | =+ (X,X) 1is a norm.
For a system

AX = B (47)

A apxnmatrix, X n x 1, B p x 1 whose entries are m x m
matrices let A, be the itheolumn in A . Assume

I A1 >0 foralli. Let f; be defined as follows

£(X) =X--2 (A <X, A>-as] (48)
1 Q 1 1 1 1

i
and F(X) = £y 0frpo ... 0 fp(X) . If Xy is any initial
element and

then XO’XI’ veey X is a sequence converging to the
B

solution of AX =
By writing

B = [B)-+-B |
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the original system AX = B can be written

<X,Ai> = Bi ; i=1, ..., p (50)
If X is the solution of the system then f.(X) is the
projection of X onto the hyperplane given éy (51) even if
A 1is invertible this method is useful since only one row of
A need be in core at one time. Gaussian reduction would
require all of A in core at one time. This projection method
can be used for the under sampled case and also in conjunction
with the reduction technique given earlier in this section.

A computer program has been written at the University of
Arizona by J. Carr for Co-Kriging and which utilizes the
projection algorithm for solving the system.
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